R1一周年,DeepSeek Model 1悄然现身
R1一周年,DeepSeek Model 1悄然现身2025 年 1 月 20 日,DeepSeek(深度求索)正式发布了 DeepSeek-R1 模型,并由此开启了新的开源 LLM 时代。在 Hugging Face 刚刚发布的《「DeepSeek 时刻」一周年记》博客中,DeepSeek-R1 也是该平台上获赞最多的模型。
2025 年 1 月 20 日,DeepSeek(深度求索)正式发布了 DeepSeek-R1 模型,并由此开启了新的开源 LLM 时代。在 Hugging Face 刚刚发布的《「DeepSeek 时刻」一周年记》博客中,DeepSeek-R1 也是该平台上获赞最多的模型。
简单到难以置信!近日,Google Research一项新研究发现:想让大模型在不启用推理设置时更准确,只需要把问题复制粘贴再说一遍,就能把准确率从21.33%提升到97.33%!
大语言模型(LLMs)的爆发式增长引领了人工智能领域的范式转移,取得了巨大的工程成功。然而,一个关键的悖论依然存在:尽管 LLMs 在实践中表现卓越,但其理论研究仍处于起步阶段,导致这些系统在很大程度上被视为难以捉摸的「黑盒」。
在 AI 辅助 Coding 技术快速发展的背景下,大语言模型(LLMs)虽显著提升了软件开发效率,但开源的 LLMs 生成的代码依旧存在运行时错误,增加了开发者调试成本。
在大语言模型(LLM)落地应用中,推理速度始终是制约效率的核心瓶颈。传统自回归(AR)解码虽能保证生成质量,却需逐 token 串行计算,速度极为缓慢;扩散型 LLM(dLLMs)虽支持并行解码,却面
在 LLM Agent 领域,有一个常见的问题:Agent 明明 "看到了" 错误信息,却总是重蹈覆辙。
在代码大模型(Code LLMs)的预训练中,行业内长期存在一种惯性思维,即把所有编程语言的代码都视为同质化的文本数据,主要关注数据总量的堆叠。然而,现代软件开发本质上是多语言混合的,不同语言的语法特性、语料规模和应用场景差异巨大。
现有的视频编辑模型往往面临「鱼与熊掌不可兼得」的困境:专家模型精度高但依赖 Mask,通用模型虽免 Mask 但定位不准。来自悉尼科技大学和浙江大学的研究团队提出了一种全新的视频编辑框架 VideoCoF,受 LLM「思维链」启发,通过「看 - 推理 - 编辑」的流程,仅需 50k 训练数据,就在多项任务上取得了 SOTA 效果,并完美支持长视频外推!
2025年12月12日,波士顿大学的 Andrey Fradkin 团队发布了一项令业界瞩目的研究 《The Emerging Market for Intelligence: Pricing, Supply, and Demand for LLMs》(智能的新兴市场:LLM的定价、供给与需求)。
扩散语言模型(Diffusion Language Models)以其独特的 “全局规划” 与并行解码能力广为人知,成为 LLM 领域的全新范式之一。然而在 Any-order 解码模式下,其通常面临