NeurIPS 2025 | ARGRE框架实现高效LLM解毒:自回归奖励引导,安全对齐更快、更准、更轻
NeurIPS 2025 | ARGRE框架实现高效LLM解毒:自回归奖励引导,安全对齐更快、更准、更轻近期,来自北航等机构的研究提出了一种新的解决思路:自回归奖励引导表征编辑(ARGRE)框架。该方法首次在 LLM 的潜在表征空间中可视化了毒性从高到低的连续变化路径,实现了在测试阶段进行高效「解毒」。
近期,来自北航等机构的研究提出了一种新的解决思路:自回归奖励引导表征编辑(ARGRE)框架。该方法首次在 LLM 的潜在表征空间中可视化了毒性从高到低的连续变化路径,实现了在测试阶段进行高效「解毒」。
近日,字节跳动一篇论文介绍了他们 LLM 训练基础设施 ByteRobust,引发广泛关注。现在,在训练基础设施层面上,我们终于知道字节跳动会如何稳健地训练豆包了。
大语言模型(LLM)不仅在推动通用自然语言处理方面发挥了关键作用,更重要的是,它们已成为支撑多种下游应用如推荐、分类和检索的核心引擎。尽管 LLM 具有广泛的适用性,但在下游任务中高效部署仍面临重大挑战。
随着大型语言模型(LLM)朝着通用能力迈进,并以通用人工智能(AGI)为最终目标,测试其生成问题的能力也正变得越来越重要。尤其是在将 LLM 应用于高级编程任务时,因为未来 LLM 编程能力的发展和经济整合将需要大量的验证工作。
在 LLM 领域,扩大强化学习算力规模正在成为一个关键的研究范式。但要想弄清楚 RL 的 Scaling Law 具体是什么样子,还有几个关键问题悬而未决:如何 scale?scale 什么是有价值的?RL 真的能如预期般 scale 吗?
在训练多轮 LLM Agent 时(如需要 30 + 步交互才能完成单个任务的场景),研究者遇到了一个严重的训练不稳定问题:标准的强化学习方法(PPO/GRPO)在稀疏奖励环境下表现出剧烈的熵值震荡,导致训练曲线几乎不收敛。
目前,所有主流 LLM 都有一个固定的上下文窗口(如 200k, 1M tokens)。一旦输入超过这个限制,模型就无法处理。 即使在窗口内,当上下文变得非常长时,模型的性能也会急剧下降,这种现象被称为「上下文腐烂」(Context Rot):模型会「忘记」开头的信息,或者整体推理能力下降。
可惜,目前 LLM 越狱攻击(Jailbreak)的评估往往就掉进了这些坑。常见做法要么依赖关键词匹配、毒性分数等间接指标,要么直接用 LLM 来当裁判做宏观判断。这些方法往往只能看到表象,无法覆盖得分的要点,导致评估容易出现偏差,很难为不同攻击的横向比较和防御机制的效果验证提供一个坚实的基准。
他们又推出了 Coral NPU,可用于构建在低功率设备上持续运行的 AI。具体来说,其可在可穿戴设备上运行小型 Transformer 模型和 LLM,并可通过 IREE 和 TFLM 编译器支持 TensorFlow、JAX 和 PyTorch。
构建能够在新环境中、无需任何针对性训练就能执行多样化任务的通用机器人,是机器人学领域一个长期追逐的圣杯。近年来,随着大型语言模型(LLMs)和视觉语言模型(VLMs)的飞速发展,许多研究者将希望寄托于视觉 - 语言 - 动作(VLA)模型,期望它们能复刻 LLM 和 VLM 在泛化性上取得的辉煌。